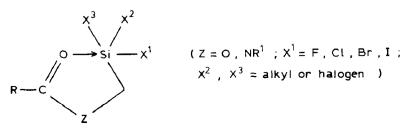
Direct evidence of the existence of organic derivatives of pentacoordinated silicon with the Si \leftarrow Cl coordinate bond. Molecular structure of chloro[1-{ 1,1-dimethyl-2-(4'-methoxy-benzoyl} hydrazonium)methyl] dimethylsilane

A.A. Macharashvili, V.E. Shklover *, Yu.T. Struchkov,

Nesmeyanov Institute of Organoelement Compounds, USSR Academy of Sciences, 28 Vavilov St., Moscow, 117334 (U.S.S.R.)

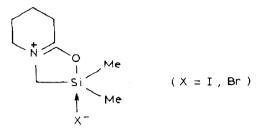
B.A. Gostevskii, I.D. Kalikhman, O.B. Bannikova, M.G. Voronkov and V.A. Pestunovich

Irkutsk Institute of Organic Chemistry of the Siberian Branch of the USSR Academy of Sciences, 664033, Irkutsk (U.S.S.R.)


(Received April 6th, 1988)

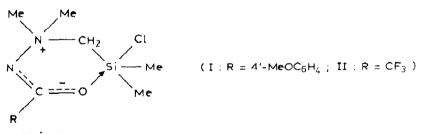
Abstract

An X-ray study of chloro[1-{1,1-dimethyl-2-(4'-methoxybenzoyl)hydrazonium} methyl]dimethylsilane (I) has been carried out (R = 0.035 for 2800 reflections). The Si atom, which has a trigonal-bipyramidal [4 + 1] coordination with the O and Cl atoms in axial positions (Si-O 1.788(1) Å, Si-Cl 2.624(1) Å), is markedly displaced from the equatorial plane towards the oxygen atom (Δ_{Si} 0.178 Å), which confirms that there is a coordinate bond between the silicon atom and chloride ion.


Introduction

The pentacoordinated silicon in some (O-Si)-chelate derivatives, has trigonal-bipyramidal coordination and is displaced from the equatorial plane towards the axial substituent X^{1} [1], as was indicated by X-ray data. In terms of the Bürgi and Dunitz

approach [2] this means that in the axial moiety the $Si-X^1$ bond order (n) is higher than that of Si-O. The stronger $Si-X^1$ (n > 0.5) and the weaker Si-O (n < 0.5) bonds may be regarded, although somewhat arbitrarily, as "covalent" and "coordinate" bonds respectively *.


Our recent structural studies [5,6] of the iodo- and bromo-(N-piperidonemethyl)dimethylsilanes prove that in these molecules the Si-X rather than the Si-O

bond exhibits the donor-acceptor character. In this case the trigonal-bipyramidal silicon atom is displaced from the equatorial plane of the three carbon atoms towards the oxygen atom and consequently n(Si-O) > n(Si-X). According to the conductometric and NMR data [5,7] the Si-X bonds dissociate appreciably on dissolution, the ionization being more pronounced on cooling. Naturally, in the ionized species the Si atom is four-coordinated.

In chloro(*N*-piperidonemethyl)dimethylsilane the Si–Cl bond is "covalent" (n = 0.53) and the Si–O bond has "coordinate" character (n = 0.47) [8,9]. It seems quite natural that in such chelate complexes with the same carbofunctional substituent the decrease in atomic number of the halogen results in a stronger Si–X bond and a weaker coordination of the O atom in the second axial position [10,11]. It is one of the consequences of the hypervalency theory [3]. The weakening of the Si–Cl bond in the OSi(C₃)Cl group and its transformation into the "coordinate" bond would require the strengthening of the bonding between the Si and O atoms.

We had the opportunity to observe this effect in the structure of the pentacoordinated silicon derivatives of a new type: chloro[1-(1,1-dimethyl-2-acylhydrazonium) methyl]dimethylsilanes I and II [12,13].

Even in the molecule of the 2-trifluoroacetyl derivative (II), in spite of high electron-accepting properties of the CF_3 group, the Si–O and Si–Cl bonds turned out to be the shortest and the longest, respectively, of those found in the derivatives

^{*} The inadequacy of these terms lies in the fact that the axial atoms are bonded to the Si atom not by a two-center (covalent and donor-acceptor), but by a hypervalent three-center four-electron bond [3]. The total bond order of the two components of the hypervalent bond $(Si-X^1 \text{ and } Si-O)$ is close to 1 [4].

of pentacoordinated silicon with trigonal-bipyramidal OSiC₃Cl, studied up to now by X-ray crystallography [14]. Analogues of II with less electronegative 2-acyl and 2-aroyl substituents should have even shorter Si-O and as a consequence longer Si-Cl bonds [13,14]. The coordinate nature of the Si-Cl bond was confirmed by NMR spectroscopy which also indicated the ready dissociation of 2-acetyl [12] and 2-aroyl [14] derivatives in solution.

The "coordinate" character of the Si-Cl bond in one such compound, chloro[1-{1,1-dimethyl-2-(4'-methoxybenzoyl)hydrazonium}methyl]dimethylsilane (I), was confirmed directly by the X-ray diffraction study described below.

Results and discussion

The comparison of main molecular parameters of compounds I and II (Table 1) fully confirms the earlier assumptions [13,14] concerning the influence of the acyl substituent on the character of the coordinate interaction in molecules of chloro[1-(1,1-dimethyl-1-acylhydrazonium)methyl]dimethylsilanes. The silicon atom in I has a markedly distorted trigonal-bipyramidal geometry (Fig. 1, Tables 2-4): the O(1) and Cl atoms are located in axial positions and the three carbon atoms C(1), C(2)and C(6) are located in the equatorial plane. The O(1)SiCl angle 173.80(5)° differs significantly from the ideal value of 180°, whereas the equatorial angles CSiC $(119.6(1)^\circ, 119.0(9)^\circ)$ and $118.6(9)^\circ)$ are closer to the expected value of 120°. The

Ħ

Compound	I
Si-Cl bond length (Å)	
and bond order	2.62
Si-O bond length (Å)	
and bond order	1.78
OSiCl angle (°)	173
C⊶O bond length (Å)	
and bond order	1.32
C…N bond length (Å)	
11 1 1	1.00

Τ	à	h	le	1

1		
Si-Cl bond length (Å)	2 (24/1) 0 14	2.422(1) 0.22
and bond order	2.624(1), 0.14	2.432(1), 0.33
Si-O bond length (Å)		
and bond order	1.788(1), 0.86	1.879(1), 0.61
OSiCl angle (°)	173.80(5)	172.20(5)
C-O bond length (Å)		
and bond order	1.321(2), 1.16	1.289(2), 1.31
C…N bond length (Å)		
and bond order	1.289(2), 1.68	1.283(2), 1.72
Predominant resonance form ^a		
and coordination of Si atom	A , (4+1)	A + B (3 + 2)
Six-membered heterocycle	boat: $\Delta(O(1)) 0.378(1) \text{ Å}$	boat: Δ(O) 0.340(1) Å
conformation	$\Delta(N(2)) 0.615(1) Å$	Δ(N(2)) 0.677(2) Å
References	this work	1
		1
a + CH ₂ Cl ⁻	N —— СН2 СІ	N СН2 СІ
$\langle \rangle = \langle \rangle \langle \rangle$		
$\overset{N}{ } \qquad \qquad$		N SI
CO `	C 0	6=0
R	R	ก้
(A)	(B)	(C)
• •		

Fig. 1. The structure of chloro[1-{1,1-dimethyl-2-(4'-methoxybenzoyl)hydrazonium}methyl]dimethylsilane (I) (H atoms are not shown): (a) projection onto the mean molecular plane, (b) projection, onto the plane perpendicular to the mean molecular plane, passing through the mid-points of the C(3)-N(2) and Si-C(6) bonds.

silicon atom is displaced from being in the plane of its neighbouring carbon atoms towards the O atom by 0.178(1) Å.

The Si–Cl bond length (2.624(1) Å) in I is substantially larger than the standard value (2.048 Å [15]) and is only smaller by 0.6 Å than the sum of the Van der Waals radii of the Si and Cl atoms, which indicates the "coordinate" character of the Si–Cl bond. The Si–O bond is only 0.1 Å longer than the standard Si–O bond (1.68 Å [16]) characteristic of the covalent compounds of the tetrahedral silicon atom. The Si–Cl bonds are longer by 0.192(2) Å and the Si–O bonds are shorter by 0.09(2) Å than in molecule II [14]. In line with suggestions by Pauling [17] this difference reflects the significant inequality of the Si–Cl and Si–O bond orders in molecule I (0.14 and 0.86, respectively, Table 1) which considerably exceeds the difference of the corresponding values in molecule II (0.33 and 0.61, respectively) in which the trigonal-bipyramidal Si atom [3 + 2] coordination of the Si atom is only slightly distorted (Δ (Si) 0.078 Å) [14].

From the above data the pentacoordinated Si atom in I can be assigned the trigonal-bipyramidal [4 + 1] coordination. To our knowledge molecule I is the first compound with a coordinate Si \leftarrow Cl bond to be structurally characterised.

Each of the corresponding bond lengths in the six-membered heterocycles of molecules I and II are quite close. Apart from the Si-O bond, the only other bond lengths with some differences are those in the NCO fragment. The most significant

Atomic coordinates (×10⁵ for Cl, Si; ×10⁴ for O, N, C; and ×10³ for H) and equivalent isotropic (isotropic for H) temperature factors $B(Å^2)$

Atom	x	У	Ζ	B _{eq}
CI	18841(8)	79371(6)	45765(2)	3.18(2)
Si	27999(8)	101969(6)	39534(2)	1.69(2)
O(1)	3500(2)	11851(1)	3590(0)	2.17(5)
O(2)	946(2)	4856(2)	2581(1)	2.27(6)
N(1)	2744(2)	13004(2)	4537(1)	1.68(6)
N(2)	4389(2)	13603(2)	4236(1)	1.84(6)
C(1)	4979(3)	9019(2)	3795(1)	2.62(9)
C(2)	454(3)	9956(3)	3606(1)	2.57(9)
C(3)	4570(2)	12976(2)	3787(1)	1.69(7)
C(4)	838(3)	13567(2)	4308(1)	1.93(8)
C(5)	3005(3)	13703(2)	5064(1)	2.66(9)
C(6)	2757(3)	11262(2)	4588(1)	2.16(8)
C(7)	6160(2)	13571(2)	3455(1)	1.64(7)
C(8)	- 2861(3)	4926(2)	3575(1)	2.43(8)
C(9)	-1270(3)	5408(2)	3289(1)	2.36(8)
C(10)	- 657(2)	4532(2)	2874(1)	1.72(7)
C(11)	- 1691(3)	3218(2)	2733(1)	2.48(8)
C(12)	6741(3)	12741(2)	3023(1)	2.21(8)
C(13)	2227(3)	6050(3)	2760(1)	2.9(1)
H(1.1)	555(3)	933(2)	348(1)	5.4(6)
H(1.2)	466(3)	795(3)	379(1)	6.1(6)
H(1.3)	601(3)	920(3)	406(1)	6.3(6)
H(2.1)	-11(3)	1070(3)	346(1)	0.3(7)
H(2.2)	- 27(3)	912(3)	376(1)	0.3(7)
H(2.2)	- 27(3)	912(3)	376(1)	8.3(7)
H(2.3)	60(3)	945(3)	331(1)	8.8(8)
H(3.1)	152(2)	1103(2)	480(1)	2.4(4)
H(3.2)	389(2)	1102(2)	479(1)	2.8(5)
H(4.1)	25(2)	678(2)	546(1)	2.4(4)
H(4.2)	90(2)	1466(2)	431(1)	2.9(5)
H(13.3)	333(3)	607(3)	251(1)	7.1(6)
H(4.3)	63(2)	1316(2)	394(1)	2.4(4)
H(5.1)	296(2)	1488(2)	502(1)	3.3(5)
H(5.2)	190(2)	1330(2)	527(1)	2.7(4)
H(5.3)	434(2)	1337(2)	521(1)	2.8(4)
H(8)	668(2)	1550(2)	386(1)	2.6(4)
H(9)	-63(3)	633(2)	338(1)	3.6(5)
H(11)	-129(3)	267(2)	245(1)	2.9(5)
H(12)	606(2)	1178(2)	293(1)	2.5(4)
H(13.1)	150(3)	715(2)	274(1)	5.8(6)
H(13.2)	268(3)	592(2)	313(1)	4.8(5)

difference is observed between the C(3) \pm O(1) bond lengths (1.321(2) Å in I and 1.289(2) Å in II), however that of I is only 0.039 Å smaller than the standard C(sp^2)-O bond length [18]. The N \pm C bond lengths (1.289(2) Å in I and 1.283(2) Å in II) are in fact equal. These bonds are markedly shorter than the single N-C(sp^2) bonds (1.43 Å [19]). The C \pm O and N \pm C bond orders, which where calculated by use of a method taken from ref. 20, are equal to 1.16 and 1.68 in molecule I and 1.31 and 1.72 in molecule II, respectively.

Bond	d	Bond	d	
Cl-Si	2.6241(8)	N(1)-C(6)	1.523(2)	
Si = O(1)	1.788(1)	N(2) - N(1)	1.470(2)	
Si-C(1)	1.856(2)	N(2) - C(3)	1.289(2)	
Si-C(2)	1.849(2)	C(3) - C(7)	1.487(2)	
Si C(6)	1.885(2)	C(7) - C(8)	1.390(2)	
O(1) - C(3)	1.321(2)	C(7) - C(12)	1.392(3)	
O(2) - C(10)	1.366(2)	C(8) - C(9)	1.387(3)	
O(2)-C(13)	1.432(3)	C(9) - C(10)	1.386(3)	
N(1) - C(4)	1.504(2)	C(10) - C(11)	1.391(3)	
N(1) - C(5)	1.500(2)	C(11)-C(12)	1.378(3)	

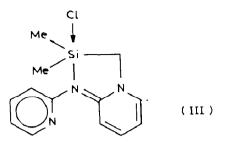
Although the N fragment bonded to the aryl group is almost coplanar with it (the angle is 15.14°) there is little to indicate π -electron conjugation between them. The C(3)–C(7) bond length (1.487(2) Å) is close to the standard value for the single C(sp^2)–C(sp^2) bond (1.476 Å) [21]. The endocyclic angle at the C(3) atom is 127.1(2)° in I and 131.3(2)° in II.

Thus the obtained data show that the lower electron-accepting ability of aryl substituent in molecule I compared with trifluoromethyl group in II ensures a more pronounced localization of π -electrons on the N=C bond, and hence an increase in the σ -donor ability of the O atom, and therefore its stronger bonding with the Si atom in molecule I than in molecule II. As a result the transfer of the electron density from the O to the Si atom in the axial fragment of molecule I becomes more pronounced, the Si–Cl bond becomes weaker and acquires more distinct "coordinate" character.

The bond length distribution in molecule I (Table 1) suggests that its structure may be represented as the canonical forms A and B, but tending more to A than to B. The geometry of molecule II is best represented as three forms, A, B and C, with the hybrid tending to lie between A and B, and less so between B and C.

The puckering parameters [22] of the six-membered heterocycle in I (Q 0.797 Å, θ 103.1°, ψ 202.5°) suggest a somewhat distorted boat conformation with a displacement of the O(1) and N(2) atoms from the N(1)C(6)SiC(3) plane by 0.378(1) and 0.615(1) Å respectively. The planes N(1)N(2)C(3) and C(6)O(1)Si, are at dihedral angles of 48.19 and 32.06°, respectively, to the plane of the bottom of the boat. The folding angle of the six-membered cycle along the N(2)...O(1) line is 42.1°. In general the bond lengths in the N(2)–N(1)–C(6)–Si moiety of I, within experimental error, are equal to the corresponding bond lengths in molecule II.

In crystal I no shortened intermolecular contacts are observed.


Thus, of all the derivatives having a pentacoordinated Si atom in the $OSi(C)_3CI$ moiety [8,9,14,23,24] our molecule I has an unprecedentedly long Si-Cl bond with pronounced "coordinate" character. In addition in molecule I was found to have the second shortest Si-O bond of these compounds. The shortest Si-O bond was observed in iodo[*N*-(piperidone)methyl]dimethylsilane.

Compound I, together with other six-membered heterocyclic chloro [1-(1,1-dimethyl-2-acylhydrazonium)methyl]dimethylsilanes [12,13] and compound III [25]

Table 3

Bond lengths d (Å)

belong to previously unknown class of derivatives of the penta-coordinated Si atom with a "coordinate" Si \leftarrow Cl bond.

Experimental

Synthesis and physico-chemical characteristics of I have been reported previously [13]. Single crystals suitable for an X-ray diffraction study were isolated by recrystallization from the hexane-chloroform mixture (1/3).

The crystals of I are colourless monoclinic: a 6.821(1), b 8.712(2), c 25.851(6) Å, $\beta 90.72(2)^{\circ}$, V 1536.1(2) Å³, $d_{calc} 1.240$ g cm⁻³, Z = 4 (C₁₃H₂₁ClN₂O₂Si), space group $P2_1/n$. Unit cell parameters and intensities of 3217 independent reflections were measured with a four-circle "Syntex P2₁" automatic diffractometer at 153 K (λ Mo- K_{α} , $\theta/2\theta$ -scan, θ_{max} 30°). The structure was solved by the direct method using the MULTAN program [26], and refined anisotropically by block-diagonal least squares for non-hydrogen atoms. H atoms located in the difference synthesis were refined isotropically. Final discrepancy factors are R = 0.035 and $R_w = 0.030$ for a total of 2800 reflections with $I \ge 2 \sigma$ (I). All calculations were carried out using INEXTL programs [27] with an "Eclipse S/200" computer. The atomic coordinates and temperature factors are given in Table 2.

1 4010 4	T	able	4
----------	---	------	---

Bond angles ω (°)

Angle	ω	Angle	ω
ClSiO(1)	173.80(5)	C(4)N(1)C(5)	108.5(1)
ClSiC(1)	85.30(7)	N(1)N(2)C(3)	114.1(1)
ClSiC(2)	80.08(7)	SiC(6)N(2)	114.6(1)
ClSiC(6)	80.15(6)	O(1)C(3)N(2)	127.1(2)
O(1)SiC(1)	96.30(8)	N(2)C(3)C(7)	116.9(2)
O(1)SiC(2)	96.28(8)	C(1)C(3)C(7)	116.0(1)
O(1)SiC(6)	93.87(7)	C(3)C(7)C(8)	121.2(2)
C(1)SiC(2)	119.65(9)	C(3)C(7)C(12)	120.0(2)
C(1)SiC(6)	119.02(9)	C(8)C(7)C(12)	118.7(2)
C(2)SiC(6)	118.62(9)	C(7)C(8)C(9)	121.0(2)
SiO(1)C(3)	123.0(1)	C(8)C(9)C(10)	119.5(2)
C(10)O(2)C(13)	117.4(2)	O(2)C(10)C(9)	124.5(2)
N(2)N(1)C(4)	109.7(1)	O(2)C(10)C(11)	115.6(2)
N(2)N(1)C(5)	104.7(1)	C(9)C(10)C(11)	119.9(2)
N(2)N(1)C(6)	113.3(1)	C(10)C(11)C(12)	120.0(2)
C(6)N(1)C(4)	111.3(1)	C(7)C(12)C(11)	120.7(2)
C(6)N(1)C(5)	109.0(1)		

Acknowledgement

The authors thank Dr. V.F. Sidorkin for fruitful discussions.

References

- 1 S.N. Tandura, M.G. Voronkov, N.V. Alekseev. Topics in Current Chem., 131 (1986) 99.
- 2 H.B. Bürgi, J.D. Dunitz. Acc. Chem. Res., 16 (1985) 104.
- 3 J.I. Muscher. Angew. Chem. Int. Ed., 8 (1969) 54.
- 4 V.A. Pestunovich, V.F. Sidorkin, O.B. Dogaev, M.G. Voronkov, Dokl. Akad. Nauk SSSR, 257 (1980) 2440.
- 5 E.P. Kramarova, G.I. Oleneva, A.G. Shipov, A.A. Macharashvili, V.E. Shklover, Yu.T. Struchkov, Yu.I. Baukov, Izv. Akad. Nauk SSSR. Ser. Khim., (1986) 2156.
- 6 A.A. Macharashvili, Yu.I. Baukov, E.P. Kramarova, G.I. Oleneva, V.A. Pestunovich, Yu.T. Struchkov, V.E. Shklover. Zh. Strukt. Khim., 28 (1987) 107.
- 7 V.A. Pestunovich, M.F. Larin, A.I. Albanov, M.G. Voronkov, Yu.I. Baukov, Abstr. Papers: 7th Intern. Symp. Organosilicon Chemistry, Kyoto, September (1984), 2C1150.
- 8 A.A. Macharashvili, Yu.I. Baukov, E.P. Kramarova, G.I. Oleneva, V.A. Pestunovich, Yu.T. Struchkov, V.E. Shklover. Zh. Strukt. Khim., 28 (1987) 114.
- 9 A.A. Macharashvili, V.E. Shklover, Yu.T. Struchkov, G.I. Oleneva, E.P. Kramarova, A.G. Shipov, Yu.I. Baukov. Chem. Comm., (1988) 683.
- 10 V.A. Pestunovich, B.Z. Shterenberg, L.P. Petukhov, V.I. Rakhlin, V.P. Baryshok, R.G. Mirskov, M.G. Voronkov, Izv. Akad. Nauk SSSR Ser. Khim., (1985) 1935.
- 11 I.D. Kalikhman, O.B. Bannikova, L.I. Belousova, B.A. Gostevskii, E.I. Liepin'sh, O.A. Vyazankina, N.S. Vyazankin, V.A. Pestunovich. Metalloorganich. Khimiya, in press.
- 12 I.D. Kalikhman, O.B. Bannikova, L.P. Petukhov, V.A. Pestunovich, M.G. Voronkov. Dokl. Akad. Nauk SSSR, 287 (1986) 870.
- 13 I.D. Kalikhman, V.A. Pestunovich, B.A. Gostevskii, O.B. Bannikova, M.G. Voronkov. J. Organometl. Chem., 338 (1988) 169.
- 14 A.A. Macharashvili, V.E. Shklover, Yu.T. Struchkov, M.G. Voronkov, B.A. Gostevskii, I.D. Kalikhman, O.B. Bannikova, V.A. Pestunovich. J. Organomet. Chem., 340 (1988) 23.
- 15 L.V. Vilkov, V.S. Mastryukov, N.I. Sadova. Determination of the Strucutres of Free Molecules. Khimiya, Moscow 1978, p. 184.
- 16 Yu.E. Ovchinnkov, V.E. Shklover, Yu.T. Struchkov, M.V. Zelenskaya, L.I. Makarova, A.A. Zhdanov. III Symp. Structure and Reactivity of Organosilicon Compounds, Irkutsk, 1985, p. 14.
- 17 L. Pauling, J. Am. Chem. Soc., 69 (1947) 542.
- 18 S. Samdal, H.M. Seip, J. Mol. Struct., 28 (1975) 193.
- 19 L.E. Sutton, Tables of Molecules and Ions. Sppl. 1956-1959, London, The Chemical Society, 1965.
- 20 R. Allman, Monatsh. Chem., 106 (1975) 779.
- 21 A.I. Kitaigorodsky. Molecular Crystals and Molecules, Academic Press Inc., New York and London, 1973, p. 431.
- 22 N.S. Zefirov, V.A. Palyulin. Dokl. Akad. Nauk SSSR, 252 (1980) 111.
- 23 A.A. Macharashvili, V.E. Shklover, Yu.T. Struchkov, M.G. Voronkov, B.A. Gostevskii, I.D. Kalikhman, O.B. Bannikova, V.A. Pestunovich. Zh. Strukt. Khim., in press.
- 24 K.D. Onan, A.T. MacPhail, C.H. Yoder, R.W. Hillard, J. Chem. Soc., Chem. Comm., (1978) 209.
- 25 D. Kummer, J. Seifert, S.C. Chandhry, B. Deppisch, G. Mattern, Abstr. 8th Intern. Symp. Organosilicon Chemistry, June 7–12, 1987, St. Louis, Missouri USA, p. 73.
- 26 G. Germain, P. Main, M.M. Woolfson, Acta Cryst. A, 27 (1971) 368.
- 27 R.G. Gerr, A.I. Yanovsky, Yu.T. Struchkov. Kristallografiya, 28 (1983) 1029.